Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Chem Res Toxicol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626399

RESUMO

Autoinduction of cytochrome P450 (P450) 3A4-mediated metabolism of thalidomide was investigated in humanized-liver mice and human hepatocyte-derived HepaSH cells. The mean plasma ratios of 5-hydroxythalidomide and glutathione adducts to thalidomide were significantly induced (3.5- and 6.0-fold, respectively) by thalidomide treatment daily at 1000 mg/kg for 3 days and measured at 2 h after the fourth administration (on day 4). 5-Hydroxythalidomide was metabolically activated by P450 3A4 in HepaSH cells pretreated with 300 and 1000 µM thalidomide, and 5,6-dihydroxythalidomide was detected. Significant induction of P450 3A4 mRNA expression (4.1-fold) in the livers of thalidomide-treated mice occurred. Thalidomide exerts a variety of actions through multiple mechanisms following bioactivation by induced human P450 3A enzymes.

2.
Drug Metab Dispos ; 52(4): 305-311, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38262704

RESUMO

Tree shrews are a nonprimate species used in a range of biomedical studies. Recent genome analysis of tree shrews found that the sequence identities and the numbers of genes of cytochrome P450 (CYP or P450), an important family of drug-metabolizing enzymes, are similar to those of humans. However, tree shrew P450s have not yet been sufficiently identified and analyzed. In this study, novel CYP2D8a and CYP2D8b cDNAs were isolated from tree shrew liver and were characterized, along with human CYP2D6, dog CYP2D15, and pig CYP2D25. The amino acid sequences of these tree shrew CYP2Ds were 75%-78% identical to human CYP2D6, and phylogenetic analysis showed that they were more closely related to human CYP2D6 than rat CYP2Ds, similar to dog and pig CYP2Ds. For tree shrew CYP2D8b, two additional transcripts were isolated that contained different patterns of deletion. The gene and genome structures of CYP2Ds are generally similar in dogs, humans, pigs, and tree shrews. Tree shrew CYP2D8a mRNA was most abundantly expressed in liver, among the tissue types analyzed, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Tree shrew CYP2D8b mRNA was also expressed in liver, but at a level 7.3-fold lower than CYP2D8a mRNA. Liver microsomes and recombinant protein of both tree shrew CYP2Ds metabolized bufuralol and dextromethorphan, selective substrates of human CYP2D6, but the activity level of CYP2D8a greatly exceeded that of CYP2D8b. These results suggest that tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver. SIGNIFICANCE STATEMENT: Novel tree shrew CYP2D8a and CYP2D8b cDNAs were isolated from liver. Their amino acid sequences were 75%-78% identical to human CYP2D6. For CYP2D8b, two additional transcripts contained different patterns of deletion. Tree shrew CYP2D8a mRNA was abundantly expressed in liver, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Recombinant tree shrew CYP2Ds catalyzed the oxidation of bufuralol and dextromethorphan. Tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver.


Assuntos
Citocromo P-450 CYP2D6 , Dextrometorfano , Etanolaminas , Humanos , Ratos , Suínos , Animais , Cães , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Dextrometorfano/metabolismo , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Filogenia , Musaranhos/genética , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Drug Metab Dispos ; 52(3): 266-273, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123944

RESUMO

Cynomolgus and rhesus macaques are used in drug metabolism studies due to their evolutionary and phylogenetic closeness to humans. Cytochromes P450 (P450s or CYPs), including the CYP2C family enzyme, are important endogenous and exogenous substrate-metabolizing enzymes and play major roles in drug metabolism. In cynomolgus and rhesus macaques, six CYP2Cs have been identified and characterized, namely, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2C76, and CYP2C93. In this study, CYP2C119, a new CYP2C, was identified and characterized in cynomolgus and rhesus macaques. Cynomolgus and rhesus CYP2C119 contained open reading frames of 489 amino acids with high sequence identities to human CYP2C8 and to cynomolgus and rhesus CYP2C8. Phylogenetic analysis showed that cynomolgus and rhesus CYP2C119 were closely related to cynomolgus and rhesus CYP2C8. In cynomolgus and rhesus genomes, CYP2C genes, including CYP2C119, form a cluster. Among the tissues analyzed, cynomolgus CYP2C119 mRNA was predominantly expressed in liver. Hepatic expressions of CYP2C119 mRNA in four cynomolgus and two rhesus macaques varied, with no expression in one rhesus macaque. Among the CYP2C mRNAs, CYP2C119 mRNA was expressed less abundantly than CYP2C8, CYP2C9, CYP2C19, and CYP2C76 mRNAs but more abundantly than CYP2C18 mRNA. Recombinant cynomolgus and rhesus CYP2C119 catalyzed progesterone 16α-, 17α-, and 21-hydroxylation and diclofenac and omeprazole oxidations, indicating that CYP2C119 is a functional enzyme. Therefore, the novel CYP2C119 gene, expressed in macaque liver, encodes a functional enzyme that metabolizes human CYP2C substrates and is likely responsible for drug clearances. SIGNIFICANCE STATEMENT: Cytochrome P450 2C119 was found in cynomolgus and rhesus macaques, in addition to the known P450 2C8, 2C9, 2C18, 2C19, 2C76, and 2C93. Cynomolgus and rhesus CYP2C119 contain open reading frames of 489 amino acids with high sequence identity to human CYP2C8. Cynomolgus CYP2C119 mRNA is predominantly expressed in the liver. Recombinant CYP2C119 catalyzed progesterone hydroxylation and diclofenac and omeprazole oxidations. Therefore, the novel CYP2C119 gene expressed in the macaque liver encodes a functional enzyme that metabolizes human CYP2C substrates.


Assuntos
Diclofenaco , Omeprazol , Animais , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C19/genética , Progesterona , Filogenia , Citocromo P-450 CYP2C9/genética , Sistema Enzimático do Citocromo P-450/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aminoácidos/genética
4.
Biochem Pharmacol ; : 115990, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38110158

RESUMO

Cytochromes P450 (P450s or CYPs), especially the CYP2C family, are important drug-metabolizing enzymes that play major roles in drug metabolism. Tree shrews, a non-rodent primate-like species, are used in various fields of biomedical research, notably hepatitis virus infection; however, its drug-metabolizing enzymes have not been fully investigated. In this study, tree shrew CYP2C18, CYP2C76a, CYP2C76b, and CYP2C76c cDNAs were identified and contained open reading frames of 489 or 490 amino acids with high sequence identities (70-78 %) to human CYP2Cs. Tree shrew CYP2C76a, CYP2C76b, and CYP2C76c showed higher sequence identities (79-80 %) to cynomolgus CYP2C76 and were not orthologous to any human CYP2C. Phylogenetic analysis revealed that tree shrew CYP2C18 and CYP2C76s were closely related to rat CYP2Cs and cynomolgus CYP2C76, respectively. Tree shrew CYP2C genes formed a gene cluster similar to human CYP2C genes. All four tree shrew CYP2C mRNAs showed predominant expressions in liver, among the tissue types examined; expression of CYP2C18 mRNA was also detected in small intestine. In liver, CYP2C18 mRNA was the most abundant among the tree shrew CYP2C mRNAs. In metabolic assays using human CYP2C substrates, all tree shrew CYP2Cs showed metabolic activities toward diclofenac, R,S-omeprazole, paclitaxel, and R,S-warfarin, with the activity of CYP2C18 exceeding that of the other CYP2Cs. Moreover, tree shrew CYP2C76 enzymes metabolized progesterone more efficiently than human, cynomolgus, or marmoset CYP2Cs. Therefore, these novel tree shrew CYP2Cs are expressed abundantly in liver, encode functional enzymes that metabolize human CYP2C substrates, and are likely responsible for drug clearances.

5.
Xenobiotica ; 53(10-11): 573-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934191

RESUMO

Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.


Assuntos
Citocromo P-450 CYP2E1 , Tupaia , Humanos , Suínos , Animais , Cães , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Tupaia/metabolismo , Clorzoxazona/metabolismo , Tupaiidae/metabolismo , Filogenia , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
6.
Xenobiotica ; 53(6-7): 465-473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800661

RESUMO

The induction assay for the cytochromes P450 (P450s) is an important tool in drug discovery and development. The inductions of dog P450 1A2 and 3A12 by omeprazole and rifampicin were functionally characterised in dog hepatocytes and were compared with induction in human HepaRG and HepaSH cells.P450 1A2-dependent ethoxyresorufin O-deethylation was induced by R,S-omeprazole and P450 3 A-dependent midazolam 1'-hydroxylation was induced by rifampicin, and both reactions were significantly enhanced in cultured dog hepatocytes and human HepaRG and HepaSH cells.Recombinant dog P450 1A2 exhibited activities towards R- and S-omeprazole 5-hydroxylation with low Km values of 23-28 µM, whereas dog P450 2C21 and 3A12 efficiently mediated S-omeprazole 5-hydroxylation and sulfoxidation, respectively, with high Vmax values of 12-17 min-1.Although omeprazole 5-hydroxylation by human P450 2C19 (and sulfoxidation by P450 3A4) in human HepaSH cells were slightly (∼2-fold) induced by R,S-omeprazole, dog P450 1A2 was autoinduced by omeprazole in dog hepatocytes and showed enhanced R-omeprazole 5-hydroxylation activity (∼5-fold).These results indicate that omeprazole can be an autoinducer of P450 1A2 in hepatocytes, and this enzyme was found to be involved in omeprazole 5-hydroxylation and sulfoxidation in dog hepatocytes and human HepaRG and HepaSH cells.


Assuntos
Citocromo P-450 CYP1A2 , Omeprazol , Humanos , Cães , Animais , Citocromo P-450 CYP1A2/metabolismo , Omeprazol/metabolismo , Hidroxilação , Rifampina/farmacologia , Microssomos Hepáticos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo
7.
Chem Res Toxicol ; 36(11): 1778-1788, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37783573

RESUMO

Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.


Assuntos
Apigenina , Família 1 do Citocromo P450 , Flavanonas , Genisteína , Humanos , Apigenina/metabolismo , Genisteína/metabolismo , Flavanonas/metabolismo , Família 1 do Citocromo P450/metabolismo , Oxirredução , Estrutura Molecular , Simulação de Acoplamento Molecular
8.
Genes Environ ; 45(1): 22, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37544994

RESUMO

Understanding of metabolic processes is a key factor to evaluate biological effects of carcinogen and mutagens. Applicability of fused-grid Template* systems of CYP enzymes (Drug Metab Pharmacokinet 2019, 2020, 2021, and 2022) was tested for three phenomena. (1) Possible causal relationships between CYP-mediated metabolisms of ß-naphthoflavone and 3-methylcholanthrene and the high inducibility of CYP enzymes were examined. Selective involvement of non-constitutive CYP1A1, but not constitutive CYP1A2, was suggested on the oxidative metabolisms of efficient inducers, ß-naphthoflavone and 3-methylcholanthrene. These results supported the view of the causal link of their high inducibility with their inefficient metabolisms due to the lack of CYP1A1 in livers at early periods after the administration of both inducers. (2) Clear differences exist between human and rodent CYP1A1 enzymes on their catalyses with heterocyclic amines, dioxins and polyaromatic hydrocarbons (PAHs). Reciprocal comparison of simulation results with experimental data suggested the rodent specific site and distinct sitting-preferences of ligands on Template for human and rodent CYP1A1 enzymes. (3) Enhancement of metabolic activation and co-mutagenicity have been known as phenomena associated with Salmonella mutagenesis assay. Both the phenomena were examined on CYP-Templates in ways of simultaneous bi-molecule bindings of distinct ligands as trigger and pro-metabolized molecules. α-Naphthoflavone and norharman served consistently as trigger-molecules to support the oxidations of PAHs and arylamines sitting simultaneously as pro-metabolized molecules on Templates of CYP1A1, CYP1A2 and CYP3A4. These CYP-Template simulation systems with deciphering capabilities are promising tools to understand the mechanism basis of metabolic activations and to support confident judgements in safety assessments.

9.
Xenobiotica ; 53(3): 140-148, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37144920

RESUMO

Drug oxidations are mediated mainly by cytochromes P450 (P450s or CYPs). CYP3As are an important P450 subfamily and include liver-specific CYP3A12 and intestine-specific CYP3A98 in dogs. Individual differences in drug oxidation activities were investigated, including correlations with immunoreactive CYP3A protein intensities and CYP3A mRNA expression levels in livers.Pooled and individual dog liver microsomes showed activities towards nifedipine, midazolam, alprazolam, and estradiol, but the levels of catalytic activities varied approximately twofold among the individual dogs. One dog harboured a CYP1A2 variant causing protein deletion but showed higher activities than the other dogs towards nifedipine oxidation, midazolam 1'-hydroxylation, alprazolam 4-hydroxylation, estradiol 16α-hydroxylation activities, and caffeine C8-hydroxylation; the latter is used as a reference reaction for CYP1A.In individual dog liver microsomes, the intensities of the immunochemical bands with anti-human CYP3A4 and anti-rat CYP3A2 antibodies along with CYP3A12 and CYP3A26 mRNA expression levels showed good correlations (p < 0.05) with nifedipine oxidation, midazolam 1'- and 4-hydroxylation, alprazolam 1'- and 4-hydroxylation, and estradiol 16α-hydroxylation activities.These results suggest that the oxidation activities of dog liver microsomes towards nifedipine and other typical CYP3A-catalyzed drugs exhibit approximately twofold individual differences and were predominantly mediated by liver-specific CYP3A12 in the dogs.


Assuntos
Citocromo P-450 CYP3A , Microssomos Hepáticos , Cães , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Nifedipino , Midazolam/metabolismo , Alprazolam/metabolismo , Fígado/metabolismo , Estradiol , RNA Mensageiro/metabolismo , Hidroxilação
10.
Biochem Biophys Res Commun ; 663: 132-141, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121123

RESUMO

Primary human hepatocytes (PHHs) have been commonly used as the gold standard in many drug metabolism studies, regardless of having large inter-individual variation. These inter-individual variations in PHHs arise primarily from genetic polymorphisms, as well as from donor health conditions and storage conditions prior to cell processing. To equalize the effects of the latter two factors, PHHs were transplanted to quality-controlled mice providing human hepatocyte proliferation niches, and engrafted livers were generated. Cells that were harvested from engrafted livers, call this as experimental human hepatocytes (EHH; termed HepaSH cells), were stably and reproducibly produced from 1014 chimeric mice produced by using 17 different PHHs. Expression levels of acute phase reactant (APR) genes as indicators of a systemic reaction to the environmental/inflammatory insults of liver donors varied widely among PHHs. In contrast to PHHs, the expression of APR genes in HepaSH cells was found to converge within a narrower range than in donor PHHs. Further, large individual differences in the expression levels of drug metabolism-related genes (28 genes) observed in PHHs were greatly reduced among HepaSH cells produced in a unified in vivo environment, and none deviated from the range of gene expression levels in the PHHs. The HepaSH cells displayed a similar level of drug-metabolizing enzyme activity and gene expression as the average PHHs but retained their characteristics for drug-metabolizing enzyme gene polymorphisms. Furthermore, long-term 2D culture was possible and HBV infection was confirmed. These results suggest that the stably and reproducibly providable HepaSH cells with lesser inter-individual differences in drug-metabolizing properties, may have a potential to substitution for PHH as practical standardized human hepatocytes in drug discovery research.


Assuntos
Hepatócitos , Fígado , Humanos , Animais , Camundongos , Hepatócitos/metabolismo
11.
Biol Pharm Bull ; 46(6): 856-863, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062721

RESUMO

The impacts of polymorphic cytochrome P450 (P450 or CYP) 2C9 on drug interactions and the pharmacokinetics of cyclooxygenase inhibitors have attracted considerable attention. In this survey, the prescribed dosage was reduced or discontinued in 150 and 56 patients, respectively, receiving celecoxib and diclofenac prescribed alone, as recorded in a Japanese database of adverse drug events. Among the factors underlying adverse events, intrinsic drug clearance rates may be a contributing factor. The pharmacokinetically modeled plasma concentrations of celecoxib after an oral 200-mg dose increased in CYP2C9*3 homozygotes: the area under the plasma concentration curve was 4.7-fold higher than that in CYP2C9*1 homozygotes. In patients with CYP2C9*3/*3, the virtual hepatic concentrations of diclofenac after three daily 25-mg doses for a week were 11-fold higher than the plasma concentrations in subjects with CYP2C9*1/*1. The in vivo and in vitro fractions of the victim drug metabolized by a specific polymorphic P450 form is an important determining factor for estimating drug-drug interactions. Virtual hepatic and plasma exposures estimated by pharmacokinetic modeling in patients harboring the impaired CYP2C9*3 allele could represent a causal factor for adverse events induced by celecoxib or diclofenac in a manner similar to that for drug interactions.


Assuntos
Celecoxib , Diclofenaco , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Administração Oral , Celecoxib/efeitos adversos , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450 , Diclofenaco/efeitos adversos , Japão
12.
Xenobiotica ; 53(1): 60-65, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36976910

RESUMO

The 2-oxidation, 3-methyl hydroxylation, and 6-hydroxylation of skatole (a contributor to boar taint) mediated by minipig liver microsomes and recombinant P450 enzymes expressed in bacterial membranes were investigated.At low substrate concentrations of 10 µM, the formation rates of indole-3-carbinol, 6-hydroxyskatole, and the sum of 3-methyloxindole, indole-3-carbinol, and 6-hydroxyskatole in male minipig liver microsomes were significantly lower than those in female minipig liver microsomes.Compensatory 3-methyloxindole and indole-3-carbinol formation in minipig liver microsomes, which lack 6-hydroxyskatole formation in males, was mediated partly by liver microsomal P450 1A2 and P450 1A2/2E1, respectively. These enzymes were suppressed by typical P450 inhibitors in female minipig liver microsomes.Among the 14 pig P450 forms evaluated, P450 2A19 was the dominant form mediating 3-methyloxindole, indole-3-carbinol, and 6-hydroxyskatole formation from skatole at substrate concentrations of 100 µM. Positive cooperativity was observed in 3-methyloxindole formation from skatole mediated by male minipig liver microsomes and by pig P450 3A22 with Hill coefficients of 1.2-1.5.These results suggest high skatole 2-oxidation, 3-methyl hydroxylation, and 6-hydroxylation activities of pig P450 2A19 and compensatory skatole oxidations mediated by pig P450 1A2, 2E1, or 3A22 in male minipig liver microsomes.


Assuntos
Carne de Porco , Carne Vermelha , Suínos , Masculino , Animais , Feminino , Escatol/metabolismo , Microssomos Hepáticos/metabolismo , Hidroxilação , Porco Miniatura/metabolismo , Odorantes , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo
13.
Drug Metab Dispos ; 51(5): 637-644, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754837

RESUMO

Cytochromes P450 (P450s or CYPs) are important drug-metabolizing enzymes. Because dogs are frequently used in drug metabolism studies, knowledge of dog CYP2C enzymes is essential because in humans these enzymes are abundant and play major roles in liver and intestine. The present study identified and characterized novel dog CYP2C94 along with previously identified dog CYP2C21 and CYP2C41. Dog CYP2C21, CYP2C41, and CYP2C94 cDNAs, respectively, contained open reading frames of 490, 489, and 496 amino acids and shared high-sequence identities (70%, 75%, and 58%) with human CYP2Cs. Dog CYP2C94 mRNA was preferentially expressed in liver, just as dog CYP2C21 and CYP2C41 mRNAs were. In dog liver, CYP2C21 mRNA was the most abundant, followed by CYP2C94 and CYP2C41 mRNAs. Moreover, the hepatic expressions of all three dog CYP2C mRNAs varied in four individual dogs, two of which did not express CYP2C41 mRNA. The three dog CYP2C genes had similar gene structures, and CYP2C94, although located on the same chromosome, was in a genomic region far from the gene cluster containing CYP2C21 and CYP2C41 Metabolic assays with recombinant proteins showed that dog CYP2C94, along with CYP2C21 and CYP2C41, efficiently catalyzed oxidations of diclofenac, warfarin, and/or omeprazole, indicating that dog CYP2C94 is a functional enzyme. Novel dog CYP2C94 is expressed abundantly in liver and encodes a functional enzyme that metabolizes human CYP2C substrates; it is, therefore, likely responsible for drug clearances in dogs. SIGNIFICANCE STATEMENT: Novel dog cytochrome P450 2C94 (CYP2C94) was identified and characterized along with dog CYP2C21 and CYP2C41. Dog CYP2C94, isolated from liver, had 58% sequence identity and a close phylogenetic relationship with its human homologs and was expressed in liver at the mRNA level. Dog CYP2C94 (and CYP2C21 and CYP2C41) catalyzed oxidations of diclofenac and omeprazole, human CYP2C9 and CYP2C19 substrates, respectively, but CYP2C41 also hydroxylated warfarin. CYP2C94 is therefore a functional drug-metabolizing enzyme likely responsible for drug clearances in dogs.


Assuntos
Diclofenaco , Omeprazol , Cães , Humanos , Animais , Varfarina/metabolismo , Filogenia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , RNA Mensageiro/genética
14.
Drug Metab Pharmacokinet ; 49: 100486, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746706

RESUMO

Drug interactions between atorvastatin and cytochrome P450 (P450) 3A substrates/inhibitors lead to an increased incidence of skeletal muscle or hepatic toxicity. However, in this survey, among 483 Japanese subjects administered atorvastatin alone, more than half (258) experienced statin intolerance and were unable to continue using the drug. Although many factors underly atorvastatin toxicity, the intrinsic clearance rate might be a contributing causal factor. The impaired P450 3A4 p.Thr185Ser variant, CYP3A4∗16 (rs12721627), has been identified in East Asians with an allele frequency of 2.2%. Pharmacokinetically modeled plasma concentrations of atorvastatin increased after a virtual oral dose of 40 mg in CYP3A4∗16 homozygotes; the maximum concentration and area under the concentration curve, respectively, were 3.3-fold and 4.2-fold those in subjects homozygous for CYP3A4∗1. In subjects with CYP3A4∗16/∗16, the virtual hepatic concentrations of atorvastatin after daily doses of 10 mg for a week were similar to or higher than the plasma concentrations. These results suggest that the estimated high virtual plasma and hepatic exposures obtained by pharmacokinetic modeling in subjects harboring impaired allele CYP3A4∗16 may be one of the causal factors for statin intolerance in a manner similar to the well-known drug interactions caused by co-administrations of CYP3A inhibitors.


Assuntos
Atorvastatina , Inibidores do Citocromo P-450 CYP3A , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Atorvastatina/efeitos adversos , Interações Medicamentosas , População do Leste Asiático , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores do Citocromo P-450 CYP3A/efeitos adversos , Sistemas de Notificação de Reações Adversas a Medicamentos
15.
Artigo em Inglês | MEDLINE | ID: mdl-36822299

RESUMO

Novel cytochrome P450 3A5 (CYP3A5) cDNA in tree shrews (which are non-rodent primate-like species) and pig CYP3A227 cDNA were identified, along with known pig CYP3A22, CYP3A29, and CYP3A46 cDNAs. All five cDNAs contained open reading frames encoding a polypeptide of 503 amino acids that shared high sequence identity (72-78 %) with human CYP3A4 and were more closely related to human CYP3As than rat CYP3As by phylogenetic analysis. CYP3A5 was the only CYP3A in the tree shrew genome, but pig CYP3A genes formed a CYP3A gene cluster in the genomic region corresponding to that of human CYP3A genes. Tree shrew CYP3A5 mRNA was predominantly expressed in liver and small intestine, among the tissues analyzed, whereas pig CYP3A227 mRNA was most abundantly expressed in jejunum, followed by liver. Metabolic assays established that tree shrew CYP3A5 and pig CYP3A proteins heterologously expressed in Escherichia coli metabolized typical human CYP3A4 substrates nifedipine and midazolam. These results suggest that novel tree shrew CYP3A5 and pig CYP3A227 were functional enzymes able to metabolize human CYP3A4 substrates in liver and small intestine, similar to human CYP3A4, although pig CYP3A227 mRNA was minimally expressed in all tissues analyzed.


Assuntos
Citocromo P-450 CYP3A , Tupaia , Suínos , Humanos , Animais , Ratos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Filogenia , DNA Complementar/genética , RNA Mensageiro/genética
16.
Drug Metab Dispos ; 51(5): 610-617, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36669854

RESUMO

The tree shrew, a non-rodent primate-like species, is used in various fields of biomedical research, including hepatitis virus infection, myopia, depression, and toxicology. Recent genome analysis found that the numbers of cytochrome P450 (P450 or CYP) genes are similar in tree shrews and humans and their sequence identities are high. Although the P450s are a family of important drug-metabolizing enzymes, they have not yet been fully investigated in tree shrews. In the current study, tree shrew CYP2A13 cDNA was isolated from liver, and its characteristics were compared with those of pig, dog, and human CYP2As. Tree shrew CYP2A13 amino acid sequences were highly identical (87-92%) to the human CYP2As and contained sequence motifs characteristic of P450s. Phylogenetic analysis revealed that tree shrew CYP2A13 was more closely related to human CYP2As than to rat CYP2As, similar to dog and pig CYP2As. Among the tissue types analyzed, tree shrew CYP2A13 mRNA was preferentially expressed in liver and lung, similar to dog CYP2A13 mRNA, whereas dog CYP2A25 and pig CYP2A19 mRNAs were predominantly expressed in liver. Tree shrew liver microsomes and tree shrew CYP2A13 proteins heterologously expressed in Escherichia coli catalyzed coumarin 7-hydroxylation and phenacetin O-deethylation, just as human, dog, and pig CYP2A proteins and liver microsomes do. These results demonstrate that tree shrew CYP2A13 is expressed in liver and lung and encodes a functional drug-metabolizing enzyme. SIGNIFICANCE STATEMENT: Novel tree shrew cytochrome P450 2A13 (CYP2A13) was identified and characterized in comparison with human, dog, and pig CYP2As. Tree shrew CYP2A13 isolated from liver had high sequence identities and close phylogenetic relationships to its human homologs and was abundantly expressed in liver and lung at the mRNA level. Tree shrew CYP2A13 metabolized coumarin and phenacetin, human selective CYP2A6 and CYP2A13 substrates, respectively, similar to dog and pig CYP2As, and is a functional drug-metabolizing enzyme likely responsible for drug clearances.


Assuntos
Sistema Enzimático do Citocromo P-450 , Tupaia , Animais , Cães , Humanos , Ratos , Citocromo P-450 CYP2A6/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Fenacetina , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tupaia/genética , Tupaia/metabolismo
17.
Drug Metab Dispos ; 51(1): 38-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772769

RESUMO

Dogs are frequently used in drug metabolism studies, and their important drug-metabolizing enzymes, including cytochromes P450 (P450), have been analyzed. In humans, CYP3A4 is an especially important P450 due to its abundance and major roles in liver and intestine. In the present study, dog CYP3A98 and CYP3A99 were identified and characterized, along with previously identified CYP3A12 and CYP3A26. The dog CYP3A cDNAs contained open reading frames of 503 amino acids and shared high sequence identity (78%-80%) with human CYP3As. Among the dog CYP3A mRNAs, CYP3A98 mRNA was expressed most abundantly in small intestine. In contrast, dog CYP3A12 and CYP3A26 mRNAs were expressed in liver, where CYP3A12 mRNA was the most abundant. The four CYP3A genes had similar gene structures and formed a gene cluster in the dog and human genomes. Metabolic assays of dog CYP3A proteins heterologously expressed in Escherichia coli indicated that the dog CYP3As tested were functional enzymes with respect to typical human CYP3A4 substrates. Dog CYP3A98 efficiently catalyzed oxidations of nifedipine, alprazolam, and midazolam, indicating major roles of CYP3A98 in the small intestine. Dog CYP3A12 and CYP3A26 metabolizing nifedipine and/or midazolam would play roles in these reactions in the liver. In contrast, dog CYP3A99 showed minimal mRNA expression and minimal metabolic activity, and its contribution to overall drug metabolism is, therefore, negligible. These results indicated that newly identified dog CYP3A98, a testosterone 6 ß - and estradiol 16 α -hydroxylase, was abundantly expressed in the small intestine and is likely the major CYP3A in the small intestine in combination with liver-specific CYP3A12. SIGNIFICANCE STATEMENT: Novel dog cytochromes P450 3A98 (CYP3A98) and CYP3A99 were identified and characterized to be functional and highly identical to human CYP3A4. Known CYP3A12 and new CYP3A98 efficiently catalyzed estradiol 16α-hydroxylation and midazolam 1'-hydroxylation. CYP3A98 mRNA was expressed in small intestine, whereas CYP3A12 mRNA was predominant in liver. Dog hepatic CYP3A12 and intestinal CYP3A98 are the enzymes likely responsible for the metabolic clearances of orally administered drugs, unlike human CYP3A4/5, which are in both the liver and intestine.


Assuntos
Citocromo P-450 CYP3A , Midazolam , Cães , Humanos , Animais , Citocromo P-450 CYP3A/genética , Nifedipino , Intestino Delgado , RNA Mensageiro/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-36563947

RESUMO

Tree shrews (Tupaia belangeri) are a non-rodent primate-like species sometimes used for biomedical research involving hepatitis virus infections and toxicology. Genome analysis has indicated similarities between tree shrews and humans in the numbers of cytochromes P450 (P450 or CYP), which constitute a family of important drug-metabolizing enzymes; however, P450s have not been fully investigated in tree shrews. In this study, we identified CYP1A1, CYP1A2, CYP1B1, and CYP1D1 cDNAs from tree shrew liver and compared their characteristics with dog, pig, and human CYP1As. The deduced amino acid sequences of tree shrew CYP1s were highly identical (82-87 %) to human CYP1s. In tree shrews, CYP1A1 and CYP1A2 mRNAs were preferentially expressed in liver, whereas CYP1D1 mRNA was preferentially expressed in kidney and lung. In contrast, CYP1B1 mRNA was expressed in various tissues, with the most abundant expression in spleen. Among the tree shrew CYP1 mRNAs, CYP1A2 mRNA was most abundant in liver, and CYP1B1 mRNA was most abundant in kidney, small intestine, and lung. All tree shrew CYP1 proteins heterologously expressed in Escherichia coli catalyzed caffeine and estradiol in a similar manner to tree shrew liver microsomes and human, dog, and pig CYP1 proteins. These results suggest that tree shrew CYP1A1, CYP1A2, CYP1B1, and CYP1D1 genes, different form human pseudogene CYP1D1P, are expressed in liver, small intestine, lung, and/or kidney and encode functional drug-metabolizing enzymes important in toxicology.


Assuntos
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1A2 , Humanos , Animais , Cães , Suínos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A1/metabolismo , Tupaia/genética , Tupaia/metabolismo , Tupaiidae/genética , Tupaiidae/metabolismo , Musaranhos/genética , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Citocromo P-450 CYP1B1 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Xenobiotica ; 52(9-11): 963-972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36373600

RESUMO

Pigs are an important species used in drug metabolism studies; however, the cytochromes P450 (P450s or CYPs) have not been fully investigated in pigs.In this study, pig CYP2C32, CYP2C33, CYP2C34, CYP2C36, CYP2C42, and CYP2C49 cDNAs were isolated and found to contain open reading frames of 490 or 494 amino acids that shared 64-82% sequence identity with human CYP2C8/9/18/19.Pig CYP2C genes formed a gene cluster in a genomic region that corresponded to that of the human CYP2C cluster; an additional gene cluster was formed by pig CYP2C33a and CYP2C33b distant from the first cluster but located in the same chromosome.Among the tissues analysed, these pig CYP2C mRNAs were preferentially expressed in liver, small intestine, and/or kidney; pig CYP2C49, CYP2C32, CYP2C34, and CYP2C33 mRNAs were the most abundant CYP2C mRNAs in liver, jejunum, ileum, and kidney, respectively.Metabolic assays showed that pig CYP2C proteins (heterologously expressed in Escherichia coli) metabolised typical human CYP2C substrates diclofenac, warfarin, and/or omeprazole.The results suggest that these pig CYP2Cs are functional enzymes able to metabolise human CYP2C substrates in liver and small intestine, just as human CYP2Cs do.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Suínos , Humanos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Intestino Delgado , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2C8/metabolismo
20.
Food Saf (Tokyo) ; 10(3): 73-82, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36237397

RESUMO

Hepatotoxicity associated with food-derived coumarin occurs occasionally in humans. We have, herein, assessed the data of existing clinical and nonclinical studies as well as those of in silico models for humans in order to shed more light on this association. The average intakes of food-derived coumarin are estimated to be 1-3 mg/day, while a ten-times higher level is expected in the worst-case scenarios. These levels are close to or above the tolerable daily intake suggested by a chronic study in dogs. The human internal exposure levels were estimated by a physiologically-based pharmacokinetic model with the use of virtual doses of coumarin in the amounts expected to derive from foods. Our results suggest that: (i) coumarin can be cleared rapidly via 7-hydroxylation in humans, and (ii) the plasma levels of coumarin and of its metabolite, o-hydroxyphenylacetic acid associated with hepatotoxicity, are considerably lower than those yielding hepatotoxicity in rats. Pharmacokinetic data suggest a low or negligible concern regarding a coumarin-induced hepatotoxicity in humans exposed to an average intake from foods. Detoxification of coumarin through the 7-hydroxylation, however, might vary among individuals due to genetic polymorphisms in CYP2A6 enzyme. In addition, the CYP1A2- and CYP2E1-mediated activation of coumarin can fluctuate as a result of induction caused by environmental factors. Furthermore, the daily consumption of food-contained coumarin was implicated in the potential risk of hepatotoxicity by the drug-induced liver injury score model developed by the US Food and Drug Administration. These results support the idea of the existence of human subpopulations that are highly sensitive to coumarin; therefore, a more precise risk assessment is needed. The present study also highlights the usefulness of in silico approaches of pharmacokinetics with the liver injury score model as battery components of a risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...